Tech Trend

MapR: Five Big Data Predictions for 2016

How data is stored, analyzed and processed is transforming businesses. According to MapR Technologies’ CEO and Cofounder John Schroeder, the industry is in the midst of the biggest change in enterprise computing in decades. Schroeder sees an acceleration in big data deployments, and has crystallized his view of market trends into these five major predictions for 2016.

1. Converged Approaches Become Mainstream

For the last few decades, the accepted best practice has been to keep operational and analytic systems separate, in order to prevent analytic workloads from disrupting operational processing. HTAP (Hybrid Transaction / Analytical Processing) was coined in early 2014 by Gartner to describe a new generation of data platforms that can perform both online transaction processing (OLTP) and online analytical processing (OLAP) without requiring data duplication. In 2016, we will see converged approaches become mainstream as leading companies reap the benefits of combining production workloads with analytics to adjust quickly to changing customer preferences, competitive pressures, and business conditions. This convergence speeds the “data to action” cycle for organizations and removes the time lag between analytics and business impact.

2. The Pendulum Swings from Centralized to Distributed

Tech cycles have swung back and forth from centralized to distributed workloads. Big data solutions initially focused on centralized data lakes that reduced data duplication, simplified management and supported a variety of applications including customer 360 analyses. However, in 2016, large organizations will increasingly move to distributed processing for big data to address the challenges of managing multiple devices, multiple data centers, multiple global use cases and changing overseas data security rules (safe harbor). The continued growth of Internet of Things (IoT), cheap IoT sensors, fast networks, and edge processing will further dictate the deployment of distributed processing frameworks.

3. Storage (Particularly Flash) Becomes an Extremely Abundant Resource

Next-generation, software-based storage technology is enabling multi-temperature (fast and dense) solutions. Flash memory is a key technology that will enable new design for products in the consumer, computer and enterprise markets. Consumer demand for flash will continue to drive down its cost, and flash deployments in big data will begin to deploy. The optimal solution will combine flash and disk to support both fast and dense configurations. In 2016, this new generation of software-based storage that enables multi-temperature solutions will proliferate so organizations will not have to choose between fast and dense—they will be able to get both.

4. “Shiny Object Syndrome” Gives Way to Increased Focus on Fundamental Value

In 2016, the market will focus much less on the latest and greatest “shiny object” software downloads, and more on proven technologies that provide fundamental business value. New community innovations will continue to garner attention, but in 2016, companies will increasingly recognize the attraction of software that results in business impact, rather than focusing on raw big data technologies.

5. Markets Experience a Flight to Quality

In terms of big data technology companies, investors and organizations will turn away from volatile companies that have frequently pivoted in their business models. Instead, they will turn to focus on more secure options – those companies that have both a proven business model and technology innovations that enable improved business outcomes and operational efficiencies.

Related posts

2020 tech predictions: the rise of 5G, entertainment in cars and increased focus on privacy

adminsmec

Kodak Alaris: Technology Trends in Document Management: 2016

adminsmec

Huawei: COVID-19 closed many doors, but innovation offers a window of hope

adminsmec

Leave a Comment